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INTRODUCTION

The purpose of the Helicopter Remote Wind Sensor (HRWS) (figure 1,
artist's concept) is to provide measured wind data, including the
downwash flow field, for ballistic corrections, by a fire control sys-
tem for AH-l or AAH aircraft. A test program has been completed in
which the HRWS was mounted on a UH-l testbed aircraft, and actual
wind measurements were made and recorded in a variety of flight en-
vironments. Data were reduced and analyzed to determine the accuracy
of measurement, quality of deduced wind profiles, and estimates of
the amount (sample size) of data necessary for in-flight ballistic
corrections. Simulation techniques have been applied to obtain wind
weighting functions and total wind effects for a 2.75-in. folding fin
aerial rocket (FFAR) to estimate the quantity and duration of measurements
required of the HRWS for effective improvement in the accuracy of delivery
of this particular free-flight armament.

The HRWS, system fabricated by Raytheon Company for the Atmospheric
Sciences Laboratory, US Army Electronics Research and Development
Command, is described in another report.'

The HRWS test scheme (table 1) was devised to provide proof of the
ability of the HRWS to perform in the helicopter flight environment
and to measure winds in unprobed conditions, thereby building a data
base for current and future studies of real helicopter flow-fields.

The t~st schedule consisted of two major parts:

1. Flights and data acquisition over level terrain, and

2. Flights and data acquisition over rough terrain, simulating
tactical free-flight weapon firings.

DATA REDUCTION AND ANALYSIS*

General

The acquisition system consisted of a pair of Ampex analog tape units,
one mounted in the helicopter and the other integrated into an analog-
to-digital computer system. Field tapes of the flight tests were
"played back" on this system, and the resulting raw digital data were
transfered in real time to disk storage in an IBM 370 computer. Data

ID. H. Dickson and C. MI. Sonnenschein, 1979, "Helicopter Remote Wind
Sensor System Description," R&D Tech Report ASL-TR-0040, US Army
Atmospheric Sciences Laboratory, White Sands Missile Range, Nrl

*The Physical Science Laboratory of New Mexico State University, under
contract DAAD07-76-C-0007, Task APOl8, reduced and analyzed the data for
this program.
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are converted, stored, and displayed by a set of programs written to
process HRWS data. Selected subsets of the data have been transfered
to other computers for remote transmission and for analysis of various
features observed in the data; approximately 46 megabytes of digitized
data are stored in the system. These data and the converted data will
be preserved on magnetic tape for future use.

Data Format

Eight channels of the analog tape were used to record the equivalent
of seven bits of discrete data output by the HRWS final processor plus
a data validity bit. In addition, four other channels were used to re-
cord the helicopter voice communication channel and the output of the
HRWS zero marker, range, and voltage controlled oscillator (VCO) voltage
level (table 2). Voice cues were used to begin and end digitized data
sets associated with the various tests. Each data set is labelled by
a unique identification number.

A transcript of the voice channel of each field tape provides requisite
information about the particular test being performed, as well as wind
reports and observations made by the flight and test personnel aboard.
Digitized data have been packed into pairs of 16-bit words, each pair
identified by appropriate frame marker bits. The peculiar structure
of the pair is due to use of the existing digitizing system (table 3).

Principle of Operation and Conversion of Data

The HRWS essentially measures the component of relative velocity of the
air at a point along the current line-of-sight which moves in a conical
scan mode. The measurement is obtained via application of the Doppler
principle.' HRWS discrete output directly represents the Doppler shift,
while the VCO data represent an analog form of the shift. Range, the
line-of-sight distance to the point of measurement, is a function of
potentiometer voltage from the HRWS range scanner.

In the nominal mode of operation, the HRWS runs with both conical scan
and range scan operating so that the point of measurement moves in a
spiral pattern in the surface of the cone (figures 2 and 3). Thus, the
time sequence of data can be represented as a scalar function of conical
scan angle and range.

A clocking mechanism and a reference point (the "O-degree" marker) cause
the HRWS to produce 128 well-defined sample points in each conical scan
so that the data are fully discretized and each sample point has associ-
ated with it an angle and a range value. The conical scan rate is usually

1!D. H. Dickson and C. H. Sonnenschein, 1979, "Helicopter Remote Wind
Sensor System Uescription," R&D Tech Report ASL-TR-0040, US Army
Atmospheric Sciences Laboratory, White Sands Missile Range, NM
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set much higher than the range scan rate so that, in a typical flight
test, the average change of range in a conical scan is approximately 2
feet. The authors take advantage of this condition in analysis of data
by assuming a fixed range for given conical scan, thus simplifying de-
duction of wind components.

The basic digitized data are: (1) discrete output of frequency shift,
(2) digitized VCO voltage, and (3) digitized voltage representing range;
all taken at conical scan angles whose values are known with respect to
a reference. Note: With the HRWS mounted on the helicopter, the cone
axis is parallel to the centerline, the angle "0 degrees" is in the ver-
tical, and the scan angle is plus counterclockwise, looking forward.
HRWS contains a self-calibrating feature with respect to the discrete
frequency shift output; thus, the conversion to windspeed (along the
line-of-sight) is of the form

IVdI = K IAf,

where

IVdis the absolute Doppler "velocity,"

lAftis the Doppler frequency, and

K is the reference frequency wavelength.

K is used here because the discrete output least significant bit has a
given frequency value which is lumped together with the wavelength, X.

Conversion of VCO was not so straightforward. The flight test series
was performed by a discriminator calibration which determined VCO voltage
versus frequency. The flight test tapes generally contained (at the
beginning of a set of tests as a requirement) a voltage calibration of
the VCO channel plus a 2 MHz tone burst. So, in principle, a calibration
function was produced through which VCO data were converted to frequency
shift and then to Doppler speed.

Subsequent discriminator calibrations have shown that shifts due to use
or "burn-in" occurred throughout the test series. No autocalibration
procedure has been applied in the conversion of VCO voltage to Doppler
speed; hence, the VCO speed deduced can be different from the discrete
equivalent by +1.5 m/s.

Conversion of range voltage to range in distance units (figures 4 and 5;
table 4) has been most difficult because of the nature of the HRWS op-
tical system. In this case, the lens equation was to have been applied,
along with image distance as a function of voltage. The resulting func-
tion is of hyperbolic form such that at small voltage (long range),

9
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uncertainties due to sampling and actual range value measurement lead to
large variations in deduced range and also to large biases for large
values of deduced range.

Generally, the digitized range voltage on a scale of 0 to 255 is used
in most presentations of data, rather than converted range in distance
units. Where display or other results are shown graphically, an alter-
native scale is shown in parallel with the data.

Data Analysis

Note that HRWS initial design was aimed at measurements out to approximately
100 ft from the sensor origin (cone apex). Further, the sensor is a
descendent of other conical scanning devices whose domain of measure
was considerably less turbulent and less subject to linear shear than
that in a helicopter's vicinity. Wind tunnel and other measurement
studies demonslrate the complexity of the helicopter flow field.

2

To maximize the spacial (geometric) resolution of wind, the HRWS cone
angle was set at the largest value attainable under the test require-
ments. By contrast, the cone diameter at a given range in the order of
helicopter rotor radius is approximately 1/3 that radius. Further, the
cone angle is such that the laser line-of-sight passes very close to
the testbed aircraft's canopy and fuselage.

Two simplified approaches have been applied in the data analysis: (1)
circular scan methods, and (2) point-pair methods. Considering the
latter, which is the simplest: any pair of points separated by a
sufficient angle can be used to deduce the wind components transverse
to, as well as parallel to, the axis halfway between them. A table has
been devised for the extreme case in this approach: (Note: extreme
means the widest separation of points, i.e., points 180 degrees apart
in conical scan angle.)

The point-pair method has been applied to derive downwash profiles as
running functions of range over a short sequence of range scans for
comparison to theoretical and wind tunnel results.

Circular scan methods are based on an assumption that, in the data,
the range change over a conical scan can be ignored so that a single
conical scan is made equivalent to a circular scan at a fixed range.

A second simplifying and realistic assumption is applied: Over a single
circular scan the wind is constant. The result of combination of these

2A. J. Landgrebe and J. C. Bennett, Jr., 1977, "Investigation of the
Airflow of a Hovering Model Helicopter at Rocket Trajectory and Wind
Sensor Locations," United Technologies Research Center, Report
R77-912573-15

10
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assumptions is that the HRWS measurements over a given circular scan at
fixed range in a constant wind can be represented as rectified sinusoidal
functions (table 5). Rectification is the result of the fact that the
HRWS output is unsigned. A method for computing wind from circular scan
data has been derived and tested on selected flight test results (table
6; figures 5, 6, 7, 8, and 9). The derivation and its equations are con-
tained in appendix A.

Essentially, the equations show a method for calculating the equivalent
of the first three terms of a Fourier series on the data. The unique
aspect of this analytical-mathematical approach is that the rectified
data (absolute values) (figure 10) are accounted for by decomposition
of the integral forms into signed segments.

These signed segments can also be treated as though an indicator function
had acted upon an originally signed signal (figure 11).

An application of the least-squares principle is then made to determine
optimum values of s and e i.e., s and cpe such that S, the weighted

sum of squared residuals, is minimized. A weighting function is generally
required so that ground (surface) effects and invalid points can be masked
out of flow field data.

BALLISTICS

An objective of the HRWS tests was to provide a baseline ballistics
study sufficient to estimate ranging requirements and quantity of data
for a given free-flight armament, in this case, the 2.75-in. FFAR.

A rocket is most sensitive to the effects of wind in its burn phase
(figure 12). The duration of the 2.75-in. FFAR burn phase is approx-
imately 1.6 s. The burning trajectory of the FFAR is most sensitive to
the helicopter flow field 3 (figure 12 of ref 3).

Tables necessary to simulate trajectories of the 2.75-in. rocket have
been obtained from various sources and are contained in appendix B.
Sensitivity functions sufficient to determine what might be required
of an in-flight wind measurement system and of a fire control system
have been derived from simulation. Sensitivity to wind is expressed
by a wind weighting function, which is a statement of how much a free-
flight armament's miss due to wind depends on a unit wind acting over
a given portion of its trajectory, and is defined by

3S. Wasserman and R. Yellir, "Preliminary Analysis of the Effect of
Calculated Downwash Distributions on the 2.75-Inch Rocket," presented
at technical conference on "The Effects of Helicopter Downwash on Free
Projectiles," US Army Aviation Systems Command, St. Louis, Missouri,
12-14 August 1975

11
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x 1 - xf(l) = oL
x L  xo0

where 1 is the distance a unit wind acts over the trajectory, starting
at launch; L is the maximum distance the wind is allowed to act; and x
is the coordinate of interest, usually range to impact or crossrange
displacement.

The wind weighting function implies, for a given profile, what extent
with respect to the variable of integration a given percentage of a
total wind field should be represented to account for a fixed percentage
of that profile's effect. More than one variable is involved in this
tradeoff, and the wind profile shape is important. The weighting func-
tions (figure 13) show that approximately 70 percent of the rocket re-
sponse to a unit wind occurs by the time it has travelled only 30 ft
from launch. However, the wind profile is such that the largest wind
velocities generally occur within that same distance interval. A second
function, called here the profile response function (table 6; figure 14),
is derived from the weighting functions and a set of profiles. This
second function is defined by

fw(T)f, (T)dT

P(O) =

f W(Tf (T)dT

where w is the wind profile. The response function shows how much the
profile affects the miss due to wind and thus implies the relative
importance of wind measurement as a function of distance. A set of
downwash profiles was taken from the flight test data to evaluate the
response function (table 7).

The results illustrate the value of measurement out to approximately
300 ft. Measurements at longer ranges are valuable. Instrumentation and
accuracy tradeoffs will be pursued as more definitive error budgets be-
come available.

In any case, the measurement of wind to 300 ft gives 96 percent or more
of the total wind response.

The curves also indicate that the differences between profiles at various
hover heights and various flight conditions are important and require
measurement to improve accuracy of delivery.

12



CONCLUDING REMARKS

Measurement of wind by the Helicopter Remote Wind Sensor in hovering
flight and in simulated firings over nap of the earth terrain has re-
sulted in a large data base for helicopter flow field and ballistic
analyses. Methods for reducing wind in component form have been developed
and applied to measured data. Selected downwash profiles from the data
and wind sensitivity functions from simulated 2.75-in. rocket tra-
jectories have been used to estimate the relative importance of measure-
ment as a function of distance for the particular armament. Future
analysis using rocket error budgets and improved wind reduction methods
is planned for a potential fire control system.

Data were successfully obtained, reduced, and analyzed for all test
flights. The aircraft hover cases generally agree with the wind tunnel
measurements. Variation in windspeed magnitudes are readily attributed
to physical differences in aircraft and the in- or out-of-ground effect
flight conditions; however, the general curve slope remains basically
the same for all profiles over semiflat terrain.

13
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Figure 4, Range versus digitized counts.
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Figure 5. Downwash profile: Wind tunnell (Landgrebe and Bennett).
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Figure 6. Downwash profile: 3-foot hover.
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Figure 7. Downwash profile: 20-foot hover.
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Figure 8. Downwash profile: 50-foot hover.
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TABLE 1. OPERATION HIWIND TEST SCHEDULE

DATE
(Mar 78) Flight Reel Description

15 1 1 Preliminary hover checks, 500-ft hover

2 Preliminary hover checks, 10- to 20-ft

hover

16 2 1 3-ft hover

17 3 1 50-ft hover

2 50- to 100-ft transition, 100-ft hover

17 4 1 Popups: 3 to 35 ft, 24-ft hover

3 to 50 ft, 50-ft hover

3 to 100-ft, 100-ft hover

17 5 1 Nap-of-the-earth (NOE) simulated popup

20-mm cannon, 40-mm grenade launcher,

and 2.75 in. FFAR

21 6 1 NOE simulated popup and fire 2.75-in.

FFAR from behind various shallow, steep,

and rough hills.

2 Same as reel 1, including lateral un-

masking and unmasking from a saddle.
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TABLE 2. ANALOG TAPE CHANNEL ASSIGNMENTS

Channel Data

1 Data clock

2 Validity

3 F3

4 F4

5 F5

6 F6 7 bits
discrete

7 F7 data

8 F8

9 F9

10 00 marker

11 Range

12 Voice

13 VCO

14 Control track

25
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TABLE 4. RANGE CALIBRATION VOLTS, COUNTS, RANGE

Volts Counts Range (f t)

0.132 43.0 100

0.136 43.8 75

0.150 47.0 50

0.196 57.1 25

0.253 70.0 12.5

0.317 84.0 10

0.379 97.7 7.5

0.505 124.3 5

0.600 145.6 4

0.766 180.7 3

0.910 211.0 2.5

1.000 229.6 2.3

27



TABLE 5. BINARY TO WIND VELOCITY CONVERSION

Velocity Longitudinal Transverse
Channel Word Bit Frequency (Hz) Alang Beam Velocity Velocity

F-9 0 8 6.4 x 10 6 34 rn/s 35 rn/s 116 rn/s
66 kn 69 kn 226 kn

F-8 0 9 3.2 x 10 6 17 rn/s 18 rn/s 58 rn/s
33 kn 34 kn 113 kn

F-7 0 10 1.6 x 10 6 8.5 rn/s 8.9 rn/s 29 rn/s
16 kn 17 kn 56 kn

F-6 0 11 8.0 x 10O5  4.2 rn/S 4.4 rn/s 14 rn/s
8.2 kn 8.6 kn 28 kn

F-5 1 8 4.0 x 105 2.1 rn/s 2.2 rn/s 7.3 rn/s
4.1 kn 4.3 kn 14 kn

F-4 1 9 2.0 x 10 5 1.1 rn/s 1.1 rn/s 3.6 rn/s
2.1 kn 2.2 kn 7.0 kn

F-3 1 10 1.0 x 105 0.53 rn/s 0.55 rn/s 1.8 rn/s
1.0 kn 1.1 kn 3.5 kn

F-2 - - 5.0 x 10 0.26 rn/s 0.28 rn/s 0.91 rn/s
0.51 kn 0.54 kn 1.8 kn

F-1 2.5 x 10O4  0.13 rn/s 0.14 rn/s 0.45 rn/s
0.26 kn 0.27 kn 0.88 kn

F-0 - -1.25 x 10 0.066 rn/s 0.069 rn/s 0.23 rn/s
0.13 kn 0.13 kn 0.44 kn

28
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TABLE 6. TYPICAL PROFILE RESPONSE FUNCTIONS FOR VARIOUS HOVER HEIGHTS
AND WIND TUNNEL RESULTS

Distance Wind Tunnel 3-ft Hover 20-ft Hover 50-ft Hover 100-ft Hover
(m) (m) (m) (m) (m) (M)

0.760 0.000 0.000 0.000 0.000 0.000

0.834 0.025 0.007 0.028 0.010 0.012

0.935 0.059 0.016 0.067 0.027 0.030

1.041 0.094 0.027 0.108 0.049 0.051

1.146 0.132 0.040 0.149 0.072 0.074

1.251 0.170 0.053 0.189 0.097 0.099

1.356 0.209 0.067 0.228 0.124 0.125

1.461 0.249 0.083 0.266 0.152 0.153

1.635 0.313 0.110 0.325 0.198 0.200

1.912 0.416 0.158 0.421 0.275 0.278

2.235 0.510 0.205 0.506 0.344 0.350

2.489 0.576 0.239 0.566 0.394 0.402

2.743 0.643 0.277 0.628 0.446 0.456

2.997 0.712 0.317 0.693 0.500 0.513

3.454 0.781 0.360 0.757 0.556 0.570

3.962 0.859 0.411 0.835 0.623 0.627

4.470 0.918 0.451 0.879 0.675 0.657

5.334 0.980 0.528 0.916 0.763 0.697

6.477 0.993 0.611 0.932 0.826 0.734

8.382 0.998 0.690 0.941 0.859 0.771

12.192 1.000 0.767 0.949 0.886 0.813

21.336 1.000 0.852 0.957 0.919 0.868

36.576 1.000 0.900 0.964 0.940 0.905

51.816 1.000 0.929 0.971 0.955 0.930

67.056 1.000 0.940 0.974 0.961 0.940

82.296 1.000 0.951 0.978 0.968 0.951

97.536 1.000 0.963 0.983 0.975 0.962

10000.000 1.000 1.000 1.000 1.000 1.000

29
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TABLE 7. TYPICAL DOWNWASH PROFILES

Range Wind Tunnel 3-ft Hover 20-ft Hover 50-ft Hover 100-ft Hover

(Counts) (m/s) (m/s) (m/s) (m/s) (m/s)

20 0.0 13.5 3.5 6.0 7.5

25 0.0 13.5 3.0 5.5 7.0

30 0.0 13.0 2.5 5.0 6.5

35 0.0 13.0 2.0 4.5 6.5

40 0.0 14.0 1.5 4.5 6.5

45 0.0 16.0 1.0 4.5 6.0

50 0.0 19.5 1.0 4.5 6.5

55 0.5 25.5 1.5 6.0 7.0

60 1.0 31.0 2.0 9.5 7.5

65 4.0 37.0 5.5 25.0 9.0

70 21.0 32.0 13.5 27.0 10.5

75 18.0 27.0 23.5 28. i 13.5

80 17.5 25.0 21.0 21.5 18.0

85 17.0 22.5 20.0 20.0 17.0

90 16.5 21.0 19.5 19.0 16.5

95 16.0 19.5 18.5 18.0 15.5

100 16.0 18.0 18.0 17.5 15.0

110 15.0 16.0 17.5 16.5 14.0

120 14.5 14.5 17.0 15.5 13.0

130 14.0 13.0 16.5 15.0 12.5

140 14.0 11.5 17.0 14.0 11.5

150 13.5 10.5 17.5 13.5 11.0

160 13.5 10.0 18.0 12.5 10.0

170 13.0 9.5 18.5 12.0 9.5

180 13.0 8.5 19.0 11.0 9.0

200 13.0 8.0 19.0 9.0 8.0

220 13.0 7.5 18.5 6.0 7.5
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APPENDIX A

CIRCULAR SCAN WIND REDUCTON

Let e be the cone half-angle

0 be the scan angle

m(O) be the measured doppler magnitude

s(O'l be the indicator functiori

w(O) be the weighting function

W xbe the wind along the cone axis

W be the cross-wind
y
W be the "vertical" wind
z

Then define q(0)) as the residual function:

n~)= w O) [SM4) n(4)) - (w cos C + w sin & sin 4)+ w sin scos 0))]x y

The data are obtained as 128 discrete points around a circular scan at angles

24r.i-1 , i = 1, 2, . ,n = 128.
1 n

Now define S as the normalized sum of the squared residuals:

S=1 n 2 2.
n I W" (0 ) 15(4). m(O .) - (W cos e + w ysin s sin 4.+ W sinse cos d]9

Thus, expanding,

S 2m2W. m. (w cos e + w sin e sin 4.+ w sin scos
n .= i i n 1 1 X y 1 Z

+ 2 _ e1W m. (w cos e + w sin & sin ~.+ w sin Ccos )
ni . i i y 1

1=n

2 n
n I W.i m. (W Cos & + w sin 6 sin 4.+ W sin & cos 4.

i=n

32



We seek to minimize S by appropriate choice of

w y Wz , nS  and ne

Taking partial derivatives with respect to the wind,

as - 2cos S-I 2 2cos n e-1 2 2cos n 2
- 0- = w.m.+ win - I w. M

n 1 1 nl ni=1 i=n =n
x s e

2cosF- n 2i
+ w2 (w cos & + w sin & sin +. + w sin c cos

i= y

ns- 1  ne- 1
S - 2sine 2 2i wl 2w- = 0 = w.m. s in$ + 2iw. M. S1n1.

3w n i=l i 1 n i=n I I
y s

2sine n 2 2sine n 2I w. m. sin$i + - I w. (w cos & + w sin & sino.n n i1n i= y
e + w sin e cos 4i) sin i

ns n e-1
S 2sin 2 2sin& 2
- =0I- w. m. cos4#i + I w. m. cos .
aw 11i=11 n i=nz s

2sine n 2 + n 2
-s I w. mi cos I + n 1 wi (w cos & + w sin s sin *.

i=n i=1e + w sin s cos *i) cos 4i

Eliminating common constants and rearranging,

n 2 n 2 n 21 w. I w. sinoi I w. cosOi w cos 1
1  i1 I I i=1 I x

n 2 n2 2 n 2I w 7-ni sin . 1 w. sino. cosOi w sin& =
i=1  i=1 1i i= i 2

n 2 n 2  n 2  2
w. cos*. I w. sino. cost. I w. Cos w Cos

i=1 1 1 1 1 1 131i= i=33
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where

ns-I n e-I 2
= wm.- I w.m. + I wi.m

1 1 1 i=n i1
s e

nsi 2  in e-1 2 n 2
12 = i m i sin w. m. sin 4i+ I w. m. sin i

i=l 1 1 1~ i=n

nS-I n e-1 2 n 2
3 = 7 w. i cos 4 I - w2 m. cos $i + I w. m. cos $i

i==n i=n
s e

We have also the side conditions

W cos & + W sin & sin 4n + W sin e cos 4ns 0
xy n z s

W cos 6 + W sin 6 sin 4n + W sin 6 cos On  0x y n z e1

where the approximation is due to the discrete sampling of the scan data.

The side conditions do not hold if there is no rectification of the sinusoidal

scan data.

Thus the system of equations to be solved is of the form:

W Cos\ /e II
[M] W sin ) 2

z sin &13)

W cos e + W sin & sin n + W cos 4n = 0
s s

W cos e + W sin & sin) + W cos4) =0
x y n e z nee e
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Given n, ne as trial values,

Wx sin & ; [M°1  12 = V2
W sin ,1 3 V 3

we have to resolve

d1 = V 1 + V2 sin p n + V3 cos n

d2 = VI + V2 sin O + V3 cos ne e

Utilizing psuedo-derivatives, we define

(D) s) + ~;

where

ad1  ad

[DI] 80 s  82
n n

e e

Then, ford = 0 and d2  0

1 o 2 D -1 ( INn e)d1

is used to adjust the trial values

On AOn + 0n
S s s

on ' n + On
e e e

and the process is repeated until

d 1  0 and d2  0
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APPENDIX B

2.75-INCU FFAR TEST SIMULATIONS

1.0 Rocket Input Tables (MK40, Mkl5i WH)

1. 1 Thurst-Impulse

burn time 1.551 sec

ave. thrust 755 lb

impulse 1171 lbf-sec

torque coefficient 0.002192 ft.

est. burn curve: 8 pt. star, stabilizing rod: Thrust nearly constant

1.2 Mass Properties (length 50", dia. 2.75")

mass (Ibm) cg (tLfnos) l1 122 (slug-ft2)

WH 10.00

Motor 4.34

Prop. 5.86

Total (Loaded) 20.20 1.4896 0.17063 32.3403

Total (b.o.) 14.34 1.0521 0.13097 26.0208

1.3 Drag Coefficient (Aref  0.04125 ft )

Mach CD

0.00 0.637

0.96 0.637

0.90 0.649

0.93 0.667

0.95 0.695

1.03 1.197

2.20 0.917
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1.4 Normal Force Slope Coefficient

Mach CN

0.0000 13.9059

0.6000 13.9059

0.7000 12.7166

0.8000 13.4484

0.9000 13.4484

0.9500 13.1557

1.0000 14.2901

1.0500 14.2901

1.1000 13.8693

1.2000 12.9361

1.3000 12.2957

1.4000 11.1430

1.5000 11.1430

2.0000 9.1486

3.0000 8.9107

4.0000 8.9107

5.0000 8.8376

1.5 Center of Mass (ref. tail)

Time CM (ft.)

0.000 2.677

1.551 3.115

2.500 3.115

999.000 3.115

1.6 Roll Moment of Inertia

Time 11
0.000 0.17063

1.551 0.13097

2.500 0.13097

999.000 0.13097
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=C d cp CNa

hence:

= Cmg d /2 CPD
cC
p Na

Ci C"IQ CP CNA CPD

0.00 920 .5596 13.9059 3.1044

0.60 920 .5596 13.9059 3.1044

0.70 864 .5596 13.7166 3.1881

0.80 879 .6237 13.4484 2.7518

0.90 892 .6856 13.4484 2.5404

0.95 912 .5917 13.1557 3.0765

1.00 1039 .4977 14.2901 3.8361

1.05 1068 .4977 14.2901 3.9431

1.10 978 .5298 13.8693 3.4950

1.20 879 .5298 12.9361 3.4368

1.30 627 .7177 12.2957 1.8657

1.40 497 .7796 11.1430 1.5029

1.50 474 .8094 11.1430 1.3800

2.00 239 1.1233 9.1486 0.6107

3.00 131 1.3823 8.9107 0.2793

1.9 Center of Pressure (ref. nose, in cals.)

Mach C 00 40 120 57.3

p
0.000 15.740 14.920 14.240 13.590

0.600 15.740 14.920 14.240 13.590

0.700 15.740 15.100 14.100 13.690

0.800 15.460 15.050 14.230 13.550

0.900 15.190 15.100 14.370 13.550

0.950 15.600 15.050 14.370 13.560

1.000 16.010 15.330 14.380 13.690

1.050 16.010 15.460 14.650 13.690
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1.7 Pitch Moment of Inertia

Time 1 22

0.000 32.3403

1.551 26.0208

2.500 26.0208

999.000 26.0208

1.8 Pitch Damping Coefficient

Mach Cmq
0.00 920

0.6 920

0.70 864

0.80 879

0.90 892

0.95 912

1.00 1039

1.05 1068

1.1 908

1.2 897

1.3 627

1.4 497

1.5 474

2.0 239

3.0 131

Transforming the damping coefficient

-qAC d -=w q ACinq 2V Na [cp (cd -cg) -cg (cp -cg)]

about the tail:

Cmqd 2/2 1CNai r 2 ri ci-
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1.100 15.870 15.190 14.370 13.420

1.200 15.870 14.920 14.240 13.140

1.300 15.050 14.640 14.100 13.140

1.400 14.780 14.370 13.690 13.000

1.500 14.650 14.370 13.690 12.730

2.000 13.280 13.280 13.280 12.440

3.000 12.150 12.150 12.150 12.150

4.000 11.480 11.480 liiO 11.490

5.000 10.965 10.965 10.965 10.965

Mach C 0 0 4 0 8 0 12 0 57.30
p

0.0000 o.5596 0.7475 0.9033 1.0523 1.0523

0.6000 0.5596 0.7475 0.9033 1.0523 1.0523

0.7000 0.5596 0.7062 0.9354 1.0294 1.0294

0.8000 0.6237 0.7177 0.9056 1.0614 1.0615

0.9000 0.6856 0.7062 0.8735 1.0615 1.0615

0.9500 0.5917 0.7177 0.8735 1.0592 1.0592

1.0000 0.4977 0.6535 0.8712 1.0294 1.0294

1.0500 0.4977 0.6237 0.8094 1.0294 1.0294

1.1000 0.5298 0.6856 0.8735 1.0912 1.0912

1.2000 0.5298 0.7475 0.9033 1.1554 1.1554

1.3000 0.7177 0.8117 0.9354 1.1554 1.1554

1.4000 0.7796 0.8735 1.0294 1.1875 1.1875

1.5000 0.8094 0.8735 1.0294 1.2494 1.2494

2.0000 1.1233 1.1233 1.1233 1.3158 1.3158

3.0000 1.3823 1.3823 1.3823 1.3823 1.3823

4.0000 1.5358 1.5358 1.5358 1.5358 1.5358

5.0000 1.6539 1.6539 1.6539 1.6539 1.6539

ref. "tail", in ft., "tail" 50 in. from nose.
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1.10 Roll Damping Moment Coefficient

Mach C1 ,

0.0 14.770

1.0 14.770

2.0 14.770

5.0 14.770
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